FQUIVALENT FRACTIONS

The tenth scene in a series of articles
on elementary mathematics.

written by fugene Maier
designed and illustrated by Tyson Smith



Consider a sequence of rectangles in
which the first rectangle has area 2 and
height 3, the second rectangle consists
of 2 copies of the first rectangle stacked
atop one another, the third rectangle
consists of 3 copies of the first rectangle
stacked atop one another, and so on.
Given the manner in which the
rectangles have been constructed, they
all have the same base. But the base of
a rectangle is its area divided by its
height. Thus the bases of the rectangles
are, successively, 5, 4 £ 5 19 Since
the bases are all equal, we have the
string of equalities: 2 =4=5=5=19 =,
Notice that any fraction of the form 22k,
where k is a positive integer will be in
this string of equalities since 2xX is the
base of a rectangle which consists of k
copies of the first rectangle stacked atop

one another.
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Fractions that have equal values are said to be equivalent. The above set of fractions,
that is, the set of all fractions of the form 32K, is a family of equivalent fractions.

The smallest fraction of those listed above, namely 3, is in lowest terms, that is, there
is no positive integer which divides both the numerator 2 and the denominator 3. It is
the only fraction among those listed that is in lowest terms.

Gene $4YS:. We began this scene by viewing fractions as the bases of rectangles. As
we shall see in the next scene, viewing fractions in this way is useful when discussing
fraction operations. But other ways of viewing fractions can also be helpful. For
example, thinking of a fraction as the length obtained when an interval is divided into
equal parts, one sees in the following diagram that the distance d is the length
obtained when an interval of length 2 is divided into 3 equal parts. Thus, d =% . But d
is also the length obtained when an interval of length 4 is divided into 6 equal parts, so
d =% . Similarly, it is the length obtained when an interval of length 6 is divided into 9
equal parts, an interval of length 8 is divided into 12 equal par’rs and so on. This gives

us another way of viewing the equivalence of the fractions, 2,4, 5,8 .12, ...
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Suppose we want to determine
if two fractions, say % and &,
are equivalent. We can view %
as the base of a rectangle of
area 7 and height 3 and % as

the base of a rectangle of area
9 and height 4.

Stacking 4 of the first rectangle
atop one another, we get a
rectangle of area 28 whose
height is 12 and base is § .
Stacking 3 of the latter
rectangle atop another, we get
a rectangle of area 27 whose
height is 12 and base is % . The
two rectangles have the same
height, but the area of the
second is smaller than the area
of the first, Hence its base must
be the smaller of the two.
Hence, 5> 7% .




The previous example suggests a general method
for comparing two positive fractions § and §
Consider the two rectangles shown in the sketch.
Rectangle § has area a and height b so its base isj,
and Rectangle T has area ¢ and height d so its base
is . (The sketches are intended to aid our thinking.
No attempt has been made to draw the rectangles
to scale.)

Now stack d copies of Rectangle S atop one another
to obtain Rectangle §' which has the same base as
Rectangle S but has height and area which are d
times that of Rectangle S. Then stack b copies of
Rectangle T atop one another to obtain Rectangle T
which has the same base as Rectangle T but has

height and area which are b times that of Rectangle T.

Rectangle T
Rectangle S

Rectangle §’ Rectangle T’

Rectangles §' and T' have equal heigh’rs. Thus their bases will be equal if, and only if,
their areas are equal, that is,§ =5 if, and only, if ad = bc. Also, the base of §' will be
larger than the base of T' if, and only if, the area of §' is larger than the area of T,
that is, 5 >, if and only if ad > bc. Similarly, the base of §' will be smaller than the
base of T' if, and only if, the area of §' is smaller than the area of T, that is, b< 4, if

and only if ad < bc.



To summarize: (1) § =4 if, and only if, ad = bc¢
(2) 5 >4 if, and only if, ad > bc
< 4 if, and only if, ad < bc

The above relationships can be used to determine the relative
size of two fractions. Consider, for example, 2 and &. Since
5x11=55<56=7x8, 2<3.

One consequence of statement (1) above is that dividing the
numerator and denominator of a fraction by the same
number doesn't change the value of the fraction: 28 =2 since

ak xb = bk xa. For example, 39=310-10=-2%5_23 the

latter fraction being in lowest terms since 5 and 6 have no 7\K/

common factors. The reduction of 33 to lowest terms could
have been accomplished in a smgle step by dividing the
numerator and denominator by 6, the largest integer which
divides 30 and 36, referred to variously as the greatest
common divisor (gcd) of 30 and 36 or the highest
common factor (hcf) of 30 and 36. Dividing the numerator
and denominator of a fraction by their ged always reduces
that fraction to an equivalent fraction which is in lowest
terms.
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Gene $4)S: Students are sometimes instructed that fractions ought always be
reduced to lowest terms. As with turning improper fractions into proper fractions,
| see no particular urgency to do this. Reducing a fraction to lowest terms may
simplify subsequent calculations involving that fraction. On the other hand, in
many applications, fractions are approximated by decimals and finding a decimal
approximation of a fraction is just as readily done on a calculator for fractions
that aren't reduced as for those that are.

Also reducing fractions is not as simple as it's made out to be in
most fifth grade textbooks. Students are generally instructed to find
common divisors of the numerator and denominator of a fraction
by inspection, but doing so may not be straightforward. What,

for instance, are the common divisors of 874 and 14062 There is

a process called the Euclidean algorithm, for finding the

greatest common divisor of two numbers, but it generally is not
part of the school curriculum. Click here for a discussion of the Euclidean
algorithm.




The Euclidean Algorithm:

Finding the greatest common factor of two numbers is analogous to the geometric
problem of finding the largest square of integral dimension that will tile a rectangle.
Consider, for example, a 12 x 18 rectangle. This rectangle can be tiled by 1 x 1,

2 x 2,3 x 3, and 6 x 6 squares. Since the dimension, of a tiling square must divide
both dimensions of the rectangle, 1, 2, 3, 4 and 6 are the common divisors of 12
and 18. The largest of these is 6.

A 12 x 18 rectangle tiled by:
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3 x 3 squares 6 x 6 squares



Finding the squares which tile a rectangle is simplified by the following observation:
If a square is cut off the end of a rectangle, the remaining rectangle is tiled by exactly
the same set of squares as the original rectangle. For example, cutting a square off
the end of a 12 x 18 rectangle produces a 6 x 12 rectangles. This rectangle is also
tiledbya1x1,2x2,3x3, and 6 x 6 squares.

A 12 x 18 rectangle, with a square removed, tiled by:

1 X 1 squares 2 X 2 squares

3 x 3 squares 6 x 6 squares



In general, if rectangle B is obtained from rectangle A by cutting a square § off the
end of A, then every square which tiles A also tiles B and conversely, every square
which tiles B also tiles A. For suppose a ¢ x ¢ square tiles rectangle A , then ¢ evenly
divides the side of square S and hence tiles §. Thus when S is cut off A, the cut goes
along the edges of the tiling squares so the remaining portion of A, which is rectangle
B, remains tiled. Conversely suppose a d x d square tiles rectangle B. Then d evenly
divides the side of B which is the side of square §. Hence the d x d square tiles square
S and since it tiles both B and S, it tiles A.
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If a square tiles rectangle B, it also tiles rectangle A.



Now if one starts with a rectangle A, cuts off a square from the end of A to get a
rectangle B, then cuts off a square from the end of B to get a rectangle C, and
continues this process, one will ultimately obtain a rectangle which is a square, call it
T. (It may be that the process continues until all that remainsis a 1 x 1 square.) Now by
the above results, all the rectangles obtained, including T, are tiled by the same set of
squares. Thus the largest square which tiles A is the same as the largest square which
tiles T, which is T itself. Thus the gcd of the dimensions of A is the dimension of the

square T.

As an example, starting with a 14 by 18 rectangle and carrying out the above process,
we arrive at a 2 x 2 square as shown below. Hence the ged of 14 and 18 is 2.
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Instead of showing all the rectangles
individually, as on the previous page, we
can simply show where the cuts occur.

Here is another example, showing the ged
of 15 and 26 is 1. Two numbers, such as
15 and 26, whose gcd is 1 are said to be

relatively prime.

the gcd of 15 and 26 is 1



For larger numbers, we can omit the grid squares and write dimensions
alongside the various rectangles, as shown in the following sketches.
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126 126 42

the ged of 325 and 455 is 65 the gcd of 420 and 714 is 42



Rather than drawing the sequence of rectangles, one can simply
record their dimensions. Notice that if the larger dimension of a
rectangle is t and the smaller dimension is s, then the dimensions
of the next rectangle in the sequence are s and t — s. Which of
these is the larger depends on the values of t and s.

Below is a table showing the dimensions of the rectangles in a
sequence of rectangles determining the gecd of 1406 and 874:

Dimensions

1406 874 1406 — 874 = 532
874 532 874 —532 = 342
532 342 532 -342 =190

342 190 342 -190 =152
190 152 190 -152 = 38
152 38 152 - 38 =114
114 38 114 - 38 = 76
76 38 76 - 38 = 38
38 38

\

The process ends in a 38 x 38 square. Hence the gecd of 1406
and 874 is 38.



END of SCENE 10:
EQUIVALENT FRACTIONS
For comments and questions
please email Gene Maier at..
genem@mathlearningcenter.org
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